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Review Article

Prelude

This article is an extension of a presentation in a Workshop 
on Technology for Detection and Prevention of 
Hypoglycemia: Panel A: Prevention/Treatment, at the 2014 
Diabetes Technology Meeting in Bethesda, Maryland 
(November 6, 2014). We started this presentation with a con-
cise review of the current state of the art of hypoglycemia 
alarms by using the cartoon presentation (with apologies to 
Rube Goldberg) shown in Figure 1. While this is a “tongue-
in-cheek” overview of glucose alarms, we will see compo-
nents of this “system” in the technologies reviewed in this 
article.

In this article, we first review glucose alarms based on 
skin conductance, followed by techniques based on electro-
encephalography (EEG) and electrocardiography (ECG) sig-
nals. The limited results concerning diabetic alert dogs are 
then covered, followed by continuous glucose monitoring 
(CGM) alarms, and multiple signal alarms. Finally, we dis-
cuss the evolution of alarm systems to artificial pancreas 
systems.

Background

Diabetes is a family of diseases characterized by insufficient 
or inefficient insulin delivery by the pancreatic beta cells, 
causing chronic hyperglycemia. Without treatment, patients 
suffering from diabetes are at an increased risk for long-term 
complications such as nephropathy, neuropathy, and retinop-
athy, thereby decreasing their life expectancy. Early on, phy-
sicians diagnosed diabetes by tasting their patients’ urine, 

motivating the development of urine glucose tests in the 
1800s.1 Although they made use of retroactive information, 
these urine glucose tests signified the first methods of ana-
lyzing hyperglycemia.

After the first clinical use of insulin to treat diabetes in 
1922,2 clinicians quickly realized the connection between 
insulin and diabetes and developed the first insulin-based 
therapies aimed at mitigating hyperglycemic complications. 
However, almost immediately after its discovery,3-5 insulin 
over-administration was linked to hypoglycemia, with short-
term complications of sweating, tachycardia, coma, and 
death. The long-term effects of hyperglycemia and short-
term effects of hypoglycemia constrain a narrow blood glu-
cose range for optimal treatment of diabetes. However, 
because of the retroactive nature of urine glucose tests and 
their inability to detect hypoglycemia, more sophisticated 
alarm systems were needed to ensure adherence to the pre-
scribed treatment.

The Center for Disease Control estimates that 29.1 mil-
lion people in the United States are currently living with dia-
betes (with 5% diagnosed with type 1 diabetes), which 
generates $245 billion in health care costs annually.6 This 
large impetus for improved glycemic control motivates the 
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development of alarm systems that are able to detect and 
even predict instances of both hypoglycemia and hypergly-
cemia. Furthermore, these alarm systems provide peace of 
mind and an increased quality of life to those living with 
diabetes. This article reviews diabetes-related alarms based 
on a variety of biosignals, focusing on historical approaches, 
recent developments, and commercial devices.

Skin Conductance and Temperature

Scientists in the mid-1970s saw the need for a passive alarm 
system that would alert diabetic patients to nighttime hypo-
glycemia and avoid the “dead in bed” phenomenon. The first 
approaches to nighttime alarm systems involved readily 
available skin temperature and/or skin conductance (gal-
vanic skin response) measurements. Although these devices 
did not directly measure blood glucose, they sought to record 
the depression in skin temperature and/or increase in perspi-
ration associated with the onset of hypoglycemia. Figure 2 
illustrates the depression in skin conductance observed dur-
ing hypoglycemia. An early study linking a sudden drop in 
skin conductance to hypoglycemic events was published by 
Bolinger et al in 1964.7 Patents described hypoglycemic-
alarm systems equipped with electrodes for skin conductance 
as early as 19578 with others following in the 1970s and 
1980s.9-11

The first commercial devices that used skin conductance 
measurements for nighttime alarms were Erpic’s Diabalert 

and Teledyne’s Sleep Sentry. The Diabalert consisted of 
meter housing the alarm which was attached through a long 
wire to a skin surface electrode. Pickup tested the Diabalert 
on 7 patients in a clinical setting and found that 3 patients 
would have not been able to respond to an alarm while 2 did 
not show signs of sweating even though their blood glucose 

Figure 2.  Illustration of the nadir in skin conductance associated 
with hypoglycemia.

Figure 1.  (A) CGM alarm sounds, (B) waking dog, who moves to adult room, (C) barking, and awaking adult, who either (D1) pulls 
lever placing pillow over head or (D2) pulls lever activating SMBG device (E). Low reading (F) causes lever to pull cord, moving bowling 
ball (G) to wake up child and (H) causing pitcher to pour glass of orange juice, so that the child can now alleviate the hypoglycemia.
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levels were 12.6 and 37.8 mg/dL.12 The original Sleep Sentry 
resembled a bulky wristwatch and combined skin tempera-
ture and skin conductance measurements. Levandoski et al 
induced hypoglycemia in 17 type 1 diabetic and 10 healthy 
individuals and observed a sensitivity of 81% for the Sleep 
Sentry alarms.13 Hansen and Duck collected data on 24 pedi-
atric patients with type 1 diabetes for a total of 1444 at-home 
nights, resulting in 42 hypoglycemic events detected by the 
Sleep Sentry, 4 additional events detected by the patients or 
their parents without an alarm, and 150 alarms without hypo-
glycemia.14 Furthermore, this initial study used a high current 
density, causing adverse skin reactions in 6 of the 24 patients. 
Clarke et al revealed failures of the Sleep Sentry to sound in 6 
of 18 experiments despite blood glucose readings between 31 
and 52 mg/dL.15 In addition, none of the subjects under study 
reached the threshold for temperature drop and 80% of non-
alarmers self-reported an increase in perspiration.15 Heger et 
al studied a myriad of signals on 7 patients and reported that 
the Sleep Sentry either failed to sound or sounded too late to 
be of use to the patient in 3 cases.16 Studies by Johansen et al on 
the use of the Teledyne Sleep Sentry for detection of nocturnal 
hypoglycemia in 22 patients for a total of 63 nights resulted in 
22 alarm sounds with 6 instances of hypoglycemia.17 Thus, this 
study concluded with the similar 3:1 ratio of false alarms to 
true alarms as found by Clarke et al.

These early devices were plagued by both false alarms, 
usually from perspiration unrelated to hypoglycemia, and 
missed alarms, possibly from hypoglycemia-associated auto-
nomic nervous system failure (hypoglycemia unawareness).18 
Although clinicians and scientists were quick to point out 
flaws in early diabetic alarm systems,14,15,19 patients in these 
studies accepted the imperfections with 1 study noting that 
parents of pediatric patients were very hesitant to return the 
investigational devices.14 The increased sense of security 
offered to patients and their loved ones outweighed the high 
rate of false alarms, speaking to the improved quality of life 
offered by alarm systems.

Currently, the Diabetes Sentry (Diabetes Sentry, Roanoke, 
TX)20 is the only hypoglycemic alarm system on the market 
that exclusively uses this technology. The improved sensor 
quality and sleeker look are big improvements over the origi-
nal Sleep Sentry. However, the superior monitoring offered by 
CGMs has limited the widespread use of the device. The 
Diabetes Sentry uses noninvasive sensors and is more afford-
able than alarm systems based on CGMs ($495 for the Diabetes 
Sentry as opposed to $3000 for Medtronic’s mySentry), but 
even Diabetes Sentry notes that this product is not an alterna-
tive to a CGM.21 It is the authors’ opinion that ever-improving 
CGM technology coupled with the inability to extend the 
Diabetes Sentry to reliable daytime use will limit the future 
success of alarm systems based solely on this technology.

Electroencephalography

Diabetes alarm systems based on EEG attempt to detect the 
decrease in cognitive function associated with hypoglycemia. 

Time series generated by EEGs are traditionally analyzed in 
the frequency domain and separated into delta, gamma, 
alpha, and beta bands, listed in order of increasing frequency. 
In the 1950s, Ross and Loeser were the first to simultane-
ously record EEG time series and blood glucose samples,22 
while Regan and Browne-Mayers23 described the increase in 
delta and gamma frequencies and decrease in alpha frequen-
cies associated with hypoglycemia, which has been sup-
ported by many other groups.24 Figure 3 illustrates the 
differences in euglycemic and hypoglycemic EEGs. In a 
study of 13 diabetic patients, Pramming et al found that no 
changes in EEG frequencies were observed above 54 mg/dL 
and significant changes occurred at 36 mg/dL.25 These 
changes appear to be independent of age, sex, awareness sta-
tus, and duration of diabetes.25-27 In 1996, Heger et al made 
numerous measurements on 7 healthy and 18 insulin-depen-
dent diabetic subjects and concluded that changes in EEG 
frequencies were the earliest and most significant; however, 
this group also noted that problems with power consumption, 
miniaturization, and sensor numbers limited this technology 
for everyday use.16

Unlike simple thresholds commonly used in skin conduc-
tance and skin temperature alarms, scientists have recently 
begun exploring more sophisticated analysis of EEG time 
series. Laione et al tested an experimental alarm system 
based on spectral analysis and artificial neural networks 
(ANNs) on 8 patients, reporting an average sensitivity and 
specificity of 71.1% and 71.5%, respectively, when subjects 
remained immobilized with their eyes shut during measure-
ments. When the ANN was trained and tested on the same 
subject, the algorithm obtained an accuracy, false-negative, 
sensitivity, and specificity percentages of 85.2%, 14.8%, 

Figure 3.  Illustration of an electroencephalogram signal during 
(a) euglycemia and (b) the increased alpha frequencies associated 
with hypoglycemia.
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60%, and 100%, respectively, giving evidence supporting 
subject-specific algorithms.28 Fabris et al used a multiscale 
entropy approach to analyze EEG time series of 19 patients 
with type 1 diabetes, further supporting the claim that hypo-
glycemia is associated with a decrease in signal complexity.29 
Improvements in sensor technology and processing power 
have enabled these techniques to become more and more 
pragmatic.

Faster signal processing and improved electrode technol-
ogy have only recently allowed EEG signals to be used in 
commercial diabetes alarms. Hypo-Safe A/S (Hypo-Safe 
A/S, Lyngby, Denmark) is currently pursuing an alarm sys-
tem that makes use of a miniature EEG device implanted 
under the skin, behind the ear.30-33 For a very nice description 
of the Hypo-Safe device and the algorithm behind it, see.27 
Briefly, the most current algorithm extracts relevant features 
using a bank of infinite impulse response filters and feeds 
this information to an ANN-based classifier. Persistence of 
hyperglycemia detection over 10 minutes is used to signal an 
alarm, with detection of deep sleep rejecting an alarm. The 
use of 1 small, inconspicuous sensor coupled with its ability 
to detect hypoglycemia in those with hypoglycemia unaware-
ness during both day and night are major advances in diabe-
tes alarms. However, since many ordinary activities (eg, 
deep sleep and chewing) must be filtered by supervised clas-
sifiers27 and some patients with a functional glucagon 
response do not exhibit EEG changes,34,35 further studies on 
the specificity and sensitivity of the fully commercial device 
will ultimately determine the success of this product.

Electrocardiography

Electrocardiography (ECG) reveals a variety of changes 
associated with the autonomic nervous system response dur-
ing episodes of hypoglycemia. In the 1950s, studies of 
healthy subjects injected with insulin revealed an increase in 
heart rate, increase in systolic pressure, and decrease in dia-
stolic pressure during hypoglycemia.36,37 These early 
approaches suffered from their nonspecificity to hypoglyce-
mia, with exercise, stress, and other stimuli setting off false 
alarms.16 Beginning in the mid-1990s, scientists have  
found correlations between a lengthened QT interval and  
hypoglycemia.38-42 Figure 4 illustrates typical ECG wave-
forms during euglycemia and hypoglycemia. Usually associ-
ated with nocturnal hypoglycemia and “dead in bed” 
syndrome,43,44 lengthened QT intervals are more indicative 
of hypoglycemia detection than earlier ECG metrics, 
although these correlations are dependent on both the meth-
ods used to calculate the QT interval45,46 and heart rate cor-
rection.47 Additional changes in ECG-related parameters in 
response to hypoglycemia include increased QT dispersion,48 
an altered T-wave morphology,41,49-51 and reduced spatial 
QRS-T angle.49 Furthermore, changes in ECG- and EEG-
related parameters in response to hypoglycemia have been 
shown to occur simultaneously.41

In addition to hypoglycemia detection, ECG-related param-
eters have also been correlated to hyperglycemia. A reduced 
heart rate variability52-54 is the most widely studied ECG-
related parameter for hyperglycemia detection, but altered QT 
interval,53,55,56 QT dispersion,53,55 and PR interval55,57 have 
also been reported as indicators of acute hyperglycemia. 
Studies by Nguyen et al57 showed that different subsets of 
ECG-related parameters were associated with hyperglycemia 
and hypoglycemia, giving rise to the possibility that ECG-
based alarm systems could detect both kinds of events.

Spurred on by advances in signal processing techniques 
and sensor technology, experimental alarm systems have 
attempted to use ECG-related parameters for hypoglycemia 
detection. Harris et al developed the Hypoglycemia On-line 
Monitoring Ensemble (HOME) to track QT interval changes 
during sleep.58 Alexakis et al automatically extracted fea-
tures and tested 2 subject-specific classifiers based on ANNs 
and linear discriminant analysis (LDA) on 11 type 1 diabetic 
patients.59 The ANN alarm system was reported to achieve 
an average accuracy, sensitivity, false alarm rate, specificity, 
and false negative rate of 85.07%, 96.64%, 5.40%, 82.99%, 
and 3.22%, respectively, and the LDA classifier produced 
slightly less desirable results. Nguyen et al tested an alarm 
system based on Bayesian neural networks on 25 patients 
with type 1 diabetes, resulting in a sensitivity and specificity 
of 83.46% and 63.88%, respectively60 (further iterations of 
this approach are found in Nguyen et al61,62 and Nuryani  
et al63).

Although experimental devices that utilize ECG-related 
parameters seem promising, commercial alarms based on 
changes in ECG measurements have had limited success. No 

Figure 4.  Illustration of (a) an electrocardiogram signal during 
euglycemia and (b) the lengthened QT interval associated with 
hypoglycemia.
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longer marketed, the HypoMon® (AiMedics Pty Ltd, 
Sydney, Australia) used heart rate, corrected QT interval, and 
skin impedance for nocturnal hypoglycemia detection. 
Skladnev et al evaluated the performance of the HypoMon 
on 52 subjects, which resulted in sensitivity and specificity 
metrics of 73% and 68%, respectively.64 The HypoMon 
entered both the Australian and UK markets, but was later 
recalled due to a large amount of false negatives.65 Possible 
explanations for the low performance of commercial ECG-
based alarm systems include the effects of various medica-
tions, electrolyte abnormalities66 as well as hypoglycemia 
unawareness.67

Diabetic Alert Dogs

Various volatile organic compounds (VOCs) in exhaled 
breath (eg, acetone) have been found to correlate with glu-
cose levels.68-70 Furthermore, VOCs have shown correlations 
with hyperglycemia,71 plasma triglycerides and free fatty 
acids,72 blood ketones,73 and exercise.74 This possible wealth 
of information could allow for more advanced diabetes alarm 
systems with a single, noninvasive sensor. However, even 
with the recent development of portable acetone sensors (eg, 
Prabhakar75) and the previous successes of FDA-approved 
breath analysis (eg, ethanol for screening blood alcohol), it is 
unlikely that breath analysis will be integrated into continu-
ous monitoring systems due to the nondiscreet nature of 
these sensors.

Although breath analysis sensors are of limited use for 
diabetes alarm systems, some believe that diabetic alert dogs 
may be trained to associate changes in a patient’s breath with 
acute complications from diabetes. Although anecdotal evi-
dence abounds, scientific evidence supporting the use of 
dogs for detecting hypoglycemia is limited. Numerous case 
studies of dogs detecting hypoglycemic events have been 
reported (see Chen et al,76 O’Connor et al,77 Tauveron et al,78 
and Wells et al79 for examples), however, these reports pro-
vide little or no evidence on the sensitivity and specificity of 
these “alarms.” Organizations such as Dogs4Diabetics® Inc 
and Canine Hope for Diabetics claim that dogs use scent to 
detect hypoglycemia. However, in a 2013 study, Dehlinger et 
al presented 3 dogs trained to detect hypoglycemia with cot-
ton balls rubbed on the skin of diabetic patients during peri-
ods of euglycemia and hypoglycemia.80 Even though this 
same methodology was used to train the dogs for hypoglyce-
mia detection, the authors reported an average sensitivity and 
specificity of 55.5% and 52.8%, respectively. Despite a lack 
of scientific evidence supporting the use of these “alarm sys-
tems,” many patients report an increased feeling of safety 
when they work with a diabetic alert dog. Furthermore, some 
groups are working on alarm systems that would allow dogs 
to remotely signal a patient’s loved ones or emergency ser-
vices during a hypoglycemic attack.81 Due to the poor sensi-
tivity and specificity and the increased patient burden, the 
continued use of diabetic alert dogs remains unclear.

Continuous Glucose Monitors

The alarm systems described previously aim to detect 
changes associated with symptoms of hypo- and/or hyper-
glycemia, classifying a patient’s state as either hypoglyce-
mic, euglycemic, or hyperglycemic. However, other alarm 
systems seek to monitor signals that are related to current 
blood glucose levels. These signals have the ability to esti-
mate the current blood glucose level over a wide range and 
possibly give more information than a signal capable of giv-
ing only simple classification. These CGMs can be divided 
into noninvasive and subcutaneous sensors. The next sec-
tions will evaluate the evidence from the scientific literature 
regarding the alarm components of these devices.

Noninvasive Glucose Monitoring

There are many different ways to obtain a noninvasive esti-
mate of blood glucose and we refer the interested reader to a 
number of detailed reviews (eg, Vashist,82 Tura et al,83 Ciudin 
et al,84 So et al85) for more details. Here, Tura et al’s defini-
tion of a noninvasive glucose sensor—that which does not 
lead to blood collection and which does not pierce the skin 
with a solid object—is used.83 Many attempts to develop 
commercial devices for real-time noninvasive glucose mea-
surements, such as those based on near infrared spectra, have 
been unsuccessful due to interference from other blood 
metabolites, inter- and intrapatient differences in tissue char-
acteristics, and miniaturization of technology. Furthermore, 
either the poor accuracy or the short lifetimes of these devices 
have limited the amount of information on the alarm compo-
nents of these devices. Therefore, the alarm component of 
the GlucoWatch® (Cygnus Inc, Redwood City, CA) is the 
only noninvasive device that is evaluated.

The GlucoWatch was the first commercial device that 
monitored glucose noninvasively and in real-time. Cygnus 
received the CE mark in 1999 and FDA clearance for the 
GlucoWatch in 2001, with an updated model approved in 
2002. This device made use of reverse iontophoresis, a pro-
cess by which an electric current brings interstitial glucose to 
the surface of the skin and then measures the amount of glu-
cose via an electrochemical sensor.86,87 Whereas autonomic 
nervous system failure undermined the performance of skin 
temperature/perspiration and ECG devices, regular auto-
nomic nervous system response proved problematic for the 
reverse iontophoresis technology. Thus, skin conductance 
and skin temperature sensors were added both to filter erro-
neous measurements and provide more information to the 
alarm system if a large skin temperature change or sweat 
accumulation was detected.88

Many scientists, clinicians, and type 1 diabetics initially 
flocked to the GlucoWatch because of its promise to forever 
change diabetes care with continuous, noninvasive measure-
ments and nighttime alerts. Cygnus determined that 100 mg/
dL (5.6 mmol/L) was the optimal tradeoff between sensitivity 



Howsmon and Bequette	 1131

and specificity of their threshold alarm.89 In studies of 40 
children, Chase et al found the ratio of total alarms to hypo-
glycemic events was 1.5. The DirecNet Study Group reported 
that 31% of the glucose values were within 15 mg/dL of the 
reference value and the sensitivity and false alarms were 23% 
and 51%, respectively, for threshold alarms set at 60 mg/dL.90 
In a later study, the DirecNet Study Group found the use of 
the “down alert” alarm improved the sensitivity from 24% to 
88% and increased the false positive rate from 6% to 56% 
during insulin induced hypoglycemia.91 Furthermore, the sen-
sitivity improved from 23% to 77% and the false positive rate 
increased from 60% to 77% during overnight studies.91 
Gandrud et al studied 45 subjects at a diabetes camp, report-
ing 20 low-glucose alarms with reference measurements, of 
which 10 were true positives.93Although its noninvasive glu-
cose monitoring was conceptually appealing, the GlucoWatch 
was plagued with high false alarm rates, an excessive warm 
up period of 2-3 hours, inability to operate under temperature 
changes and increased perspiration level, and the tendency to 
cause skin irritation in some patients. The GlucoWatch was 
discontinued on July 31, 2007.82

Continuous Subcutaneous Glucose Monitors 
(CGMs)

High sensor accuracy and alarm sensitivity has propelled the 
use of CGMs to warn of glycemic excursions. CGMs make 
use of small enzymatic sensors inserted beneath the skin to 
measure interstitial glucose. An oxidation-reduction reaction 
produces a measureable current that is calibrated with a 
blood glucose measurement. For more information on the 
chemistry and design of these sensors, see the review by 
McGarraugh.92 The first commercial CGM, the MiniMed 
(Medtronic, Northridge, CA), was approved by the FDA in 
1999, but alarms did not appear on commercial devices until 
the mid-2000s with the introduction of the Guardian 
(Medtronic, Northridge, CA) and the STS™ (DexCom, San 
Diego, CA) CGMs. In studies of the Guardian in 71 subjects, 
Bode et al reported a 67% sensitivity, 90% specificity, and 
47% false alerts for hypoglycemic (≤ 70 mg/dL) alarms and 
a 63% sensitivity, 97% specificity, and 19% false alerts for 
hyperglycemic (≥ 250 mg/dL) alarms.93 Furthermore, this 
study revealed that while a CGM with a threshold alarm 
decreased the duration of hypoglycemia, the occurrence of 
hypoglycemia was unchanged.

Current commercial CGM devices have even higher sen-
sor accuracies, especially in the hypoglycemic range. 
Although the performance of threshold alarm systems on 
these later generation devices have not received as much 
attention as the sensor accuracies, improved sensor accuracy 
in the hypoglycemic range is almost certain to directly trans-
late to a more accurate hypoglycemic alarm. An updated cali-
bration algorithm was shown to improve sensitivity in the 
hypoglycemic range from 54.9% with Paradigm REAL-Time 

System to 82.3% with the Paradigm Veo.94 The DexCom 
G4™ PLATINUM has also shown greater accuracy in the 
hypoglycemic range than the DexCom SEVEN PLUS.95

While other alarm systems have shown improvements in 
alarm sensitivity/specificity over time, CGMs with threshold 
alarms have also shown improvements in clinical outcomes. 
We refer the readers to DeSalvo and Buckingham96 for a 
recent review on the current and future use of CGMs in dia-
betes management. In studies of the STS system, Garg et al 
reported that insulin requiring type 1 and type 2 diabetics 
given real time access to CGM readings and threshold alarms 
spent 21% and 23% less time in the hypoglycemic and hyper-
glycemic ranges, respectively.97 Deiss et al showed that the 
Guardian® REAL-Time CGM System with threshold alarm 
systems was able to reduce HbA1C levels in type 1 diabetics.98 
In a study of 322 adults and children using the SEVEN 
(DexCom, San Diego, CA), MiniMed Paradigm REAL-
Time (Medtronic, Northridge, CA), or FreeStyle Navigator 
(Abbott Diabetes Care, Alameda, CA) in a home environ-
ment, the JDRF also showed improved time in range and 
HbA1C levels.99

Predictive alarms are one of the most exciting aspects of 
CGM-based alarm systems, allowing patients to take preven-
tative, rather than corrective, action. Although exact details 
are retained as trade secrets, commercial devices use linear 
predictions based on the previous rate-of-change of CGM 
readings to issue a predictive alarm.100 For an overview of 
predictive CGM-based alarm systems prior to 2010, we refer 
the interested reader to Bequette.101 Since that time, many 
experimental predictive alarms based on data driven models 
have been developed. With a hypoglycemic threshold of 60 
mg/dL and a 30-minute prediction horizon, adaptive time 
series based on CGM only102,103 demonstrated a sensitivity 
and specificity of 89% and 78%, respectively. Future 
improvements of this alarm system have included activity104 
and insulin105 information. Other approaches for short-term 
CGM predictions make use of neural networks106-108 or sup-
port vector machines.109

Multiple Signal Alarms

In addition to devices that only measure 1 variable, there 
have been experimental attempts to integrate multiple sig-
nals for more robust alarms. A patent from 2003 mentions 
the use of both ECG and EEG signals for hypoglycemia 
detection,110 but no commercial device has employed this 
technology. Attempts to augment CGM-based alarm sys-
tems with ECG-derived signals,111,112 skin temperature/con-
ductance signals,88,104,113 and energy expenditure signals104 
have also been reported. While adding multiple signals can 
potentially add information and provide more information 
to alarm systems, the increased patient burden must be taken 
into account to ensure the effective translation from the 
clinic to the home.
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From Alarm Systems to an Artificial 
Pancreas

The high sensor accuracy and improved clinical outcomes 
offered by CGM systems have established enough confi-
dence in CGM systems to actually act on CGM-based alarms 
and alter insulin delivery. This promise to move from alarm 
system to artificial pancreas is what has allowed CGM alarm 
systems to eclipse alarm systems based on the other reviewed 
technology. For a recent review of current progress in the 
development of artificial pancreas systems, see Shah et al.114

Hypoglycemia Minimizer

While threshold alarms rely on patients to take corrective 
action, hypoglycemia minimizers (HMs) in the form of low 
glucose suspend (LGS) systems automatically suspend insu-
lin delivery when patients are unable to respond to hypogly-
cemia. For an early review of LGS systems, see Pickup.115 
Both the Paradigm® Veo™ (Medtronic, Northridge, CA), 
which obtained the CE Mark in 2009, and the MiniMed® 
530G (Medtronic, Northridge, CA), which obtained FDA 
approval in 2013, suspend insulin delivery for up to 2 hours 
at the onset of hypoglycemia. The LGS component of the 
Paradigm Veo has been shown to significantly reduce expo-
sure to hypoglycemia,116-118 especially during the night,119,120 
without increasing exposure to hyperglycemia.116,117,120 A 
recent retrospective analysis of the LGS feature of the 
MiniMed 530G in > 20 000 patients over a 40-week period 
also shows decreased exposure to hypoglycemia without 
increase in hyperglycemia.121

Just as highly accurate threshold alarms paved the way for 
LGS systems, predictive alarms have led to predictive low 
glucose suspend (PLGS) systems. Unlike LGS systems, 
PLGS systems can reduce the occurrence as well as the area 
under the curve of hypoglycemia. Simulation studies have 
been used to illustrate the benefits of a PLGS system over an 
LGS system.106 Medtronic has recently released the 
MiniMed™ 640G system with SmartGuard™ in Australia 
that is able to predict glucose 30 minutes in advance and sus-
pend insulin delivery.122 Although more ambulatory data is 
needed to determine the effectiveness of this system, many 
experimental systems give evidence for improved glycemic 
control with PLGS systems. An algorithm utilizing a voting 
scheme to predict hypoglycemia123 successfully prevented 
84% of nocturnal hypoglycemic events in an in-patient 
study.124 A Kalman filter-based algorithm successfully pre-
vented hypoglycemia in 73% of subjects in an in-patient 
study.125 With updated tuning parameters, this algorithm 
reduced the occurrence of nocturnal hypoglycemia by almost 
50% in an out-patient setting.126 A larger study of the same 
PLGS system reduced median hypoglycemia area under the 
curve by 81% and extended hypoglycemia by 74% without 
significant increase in hyperglycemia or morning ketosis.127 
An experimental algorithm based on time series forecasting 
has also been evaluated by inducing hypoglycemia through 

exercise in a small number of patients, resulting in a reduc-
tion in occurrence of hypoglycemia.128 Other HM approaches 
have incorporated insulin129 or historical CGM130 informa-
tion and smoothly attenuate insulin delivery, rather than 
completely suspend/resume insulin delivery. For a more 
information on hypoglycemia prediction algorithms and 
HMs, we refer the readers to Bequette.131

Hypoglycemia/Hyperglycemia Minimizer

Experimental systems that act on predicted hyperglycemic 
alarms to deliver more insulin have only been recently devel-
oped. In addition to reducing patient exposure to hypoglyce-
mia, these hypoglycemia/hyperglycemia minimizers 
(HHMs) or control to range systems (CTRs) seek to decrease 
the mean glucose level. The sCTR and eCTR systems pre-
sented in Patek et al132 and clinically evaluated in Breton  
et al133 increased time in the target range while reducing the 
exposure to hypoglycemia compared with standard open-
loop continuous subcutaneous insulin infusion therapy. In an 
in-patient safety study, Finan et al report that patients using 
their HHM spent 69.6% and 30.2% of the time in the 70-180 
mg/dL and >180 mg/dL ranges, respectively.134 While acting 
on hypoglycemic alarms via LGS or PLGS systems can be 
fairly aggressive and reduce hypoglycemia exposure to near 
zero, acting on hyperglycemic alarms in an HHM must be 
more cautious.

Safety Components of an Artificial Pancreas

With the development of the artificial pancreas, a closed-
loop system that determines the insulin administration which 
maintains euglycemia, alarm systems will be necessary to 
ensure patients can take the minimal action necessary to 
maintain the system and manually control their glucose level 
in the presence of system malfunctions. From this viewpoint, 
the patient’s interaction with the artificial pancreas system is 
analogous to an operator’s interaction with a chemical plant: 
under normal circumstances, no action is required, but severe 
circumstances require manual action to maintain a desired 
state. Current experimental systems have made use of traffic 
lights129 and other safety layers135 to indicate alarms of dif-
fering severities during closed-loop control. Patients may be 
alarmed if an insulin set failure is detected, the CGM signal 
has dropped or is too variable, the insulin available in the 
pump is low, the patient is close to the total daily dose (TDD) 
limit, or if the system needs to be charged. Furthermore, 
other experimental safety layers incorporate LGS or PLGS 
suspend systems.135,136 We refer the interested reader to 
Bequette137 for more details on some of the safety layer fea-
tures necessary to a fully closed-loop system.

Summary

Diabetic alarm systems potentially afford more effective dia-
betes management and an increased quality of life to those 



Howsmon and Bequette	 1133

living with diabetes. While some signals are only capable of 
classifying a patient’s state as normal and hypo- and/or 
hyperglycemic, others can estimate blood glucose concentra-
tions. Furthermore, some signals are only suitable for detec-
tion of altered glycemic states while other signals can predict 
these undesirable events. Although standalone alarm systems 
will become obsolete with the development of the artificial 
pancreas, alarm systems will form the core safety compo-
nents and have paved the way for insulin administration 
algorithms of various complexities.
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